INVITED

Estimation of Generalised Regression Models by the Grouping
Method

Kazumitsu Mawata
Deparument of Social and International Relations

University of Tokyo

Abstract

This paper considers estimation of the model given by 3 = k{x;’ﬁ +u,0), = L2, 7,

where h i3 a known

ransformation function. The model includes various types of important models such as the standard regression, censored regression,

qualitative choice, duration, and Box-Cox transformation medels. It is shown in this paper that the grouping estimator proposed by

Nawata {1990a, b) can be generalised for estimation of the model. Nawata's grouping estimator represents a new class of estimation

method, and has the same asymptotic distribution of estimators such as the maximum ftkehihood (ML) cstimator, least squares (L5}
estimator, and the least absclute deviations (LAD) estimator. The grouping estimator considered in this paper 35 defined by the
following steps. First, the observations are divided into N different groups based on the values of x,. Next, a proper location

parameter is chosen and the location parameter of ¥, {and other parameters if necessary) is estimated in each group. Finally, the
parameters are estimated by the ML method based on the asymptotic distribution function of the location parameler estimated n the

previous stage.

. Intreduction

This paper considers estimation of the model given
by

(1) y,= b(x By a), t = 12,7,

where h is a known transformation function. The model given
by (1) includes various types of irnportant models such as the
standard regression, censored regression, qualitative choice,
duration, and Box-Cox transformation models.

It is shown in this paper that the groupmg estimator
propesed by Nawata (1990a, b) can be generalised for
estimation of the model in {1). Nawata's grouping estimator
represents a new class of estimation method, and has the same
asymplotic distribution of estimators such as the maximum
likelihood (ML) estimator | least sguares (LS) estimator, and
the least absolute deviations (LAD) estimator.

2. Models and the Definition of the Estimator

The model considered in this paper is given as

follows:
:V': = I}ft o,
2
v, = Ay, ey, =120,

f is 2 K-dimensional vector of unknown parameters, {x, }are

K-dimensional vectors of random variables, {x,} and {¥,}
»

arc observable but {y, } are ot observable, and {u,}are

unknown error terms, The following assumptions are made.

T / . .
{{u,, %, ) }areiid random variables, however, ,
and x, do not have to be independent for cach t The



distribution functions of {4, } may depend on the values of x,
but are the same 1 the values of x, are the same. The proper
location parameter of the distribution of %, is O for any t.
Assumption 2

The estimator of the location parameter has a proper

asymplolic distribution,

To clanify the ideas of the grouping estimator proposed in this
paper, the following assumption is made for {x }.

Assumption 3
{x,} take finitely many vector wvalues

This assumption can be removed by adjusting the
values of { y, } in each group. However, to avoid unnecessary
complications, the adjustment method iz cxplained in the

appendix.

3 General Principles of the Grouping Esthmator

The grouping estimator constdered in this paper is

defined 1 the following steps.

Step L

Divide the observations nto ™ different groups based
on the values of x . This means that the 1-th observation
belongs o the i-th group ifand only if x, = . Let /, bean
index set of the i-th group such that ¢ & [ il and only if

X, = ﬁj. (Figure 1)

Step 2
Choose the proper location parameler and cstimate
the locabon parameter of ¥, n(and other parameters, if
Fas M 2l
seeneary e - A /
necessary) in cach group. Let 8 = (6,.9,,....8,) be
estimators of the parameters. Hstimate the asymptotic

L A N
distnbution functions of 8. Figure 2.3
H

Slep 3
Estimate o and B by the ML method using § and

the estimated asymptotic distribution functions.

As mentioned above, the definition and properties of
the grouping estimator depend on the choice and method of
caloulation of the location paramcter. In the next seclion,

-several important cases are investigated.
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Figure I Divide the observations into N different

groups based on the values of x .

Figure 2 Bstimate the location parameler of 3, and apply

the M. method o the estimated values.



4 Grouping Estimater in Some Impoztant Cases

Inn this section, cases where the choice of the location
parameter is
1) ML estimator (MLE),
1) mean,
1) median, and
1v) other parameters
are considered. In most cases, the grouping estimator has the
same asymplotic distribution as the known estimators,

4.1 Grouping Estimator Using the Maximum
Likelihood Method

[f the distribution functions of { .} are known, the
model can be estimated using the MLE in Step 2. Steps 2 and
3 arc as follows in this case.

Step 2

Since hand the distributions of {7, } are known, the
distribution  functions  of  { Y,yean  be  calculated.
Letp, = x:ﬁ . U the t-th observation belongs tc i, that is
t € 1, the distribution function of ¥, can be written as
G.{u, &, n), where 7§ is a vector of nuisance parameters
of the distribution function of u,. Estimate (u e’,n’y and
the asympiotic variance of the estimators in each group by the
ML method.

Step 3
Under the standard assumptions of ML, the
estimators are asymptoticelly normal and are written as:

(3) i=1,2,..W,

e, = N0, A),

is an estimator of lj, ", 15 the number of observations in the
. X ) . . A
i-th cell, and Ai 15 the asymptotic variance matrix of ,A,!,

(a’, B’, 0} are estimated by the generalised
least squares (GL%) method, replacing 4, by the estimated
variance malrix A, and the asymptotic distribution of the
estimator defined here is as efficient as the standard MLE.
Note that Berkson's (1944, 1955, 1980} minimum chi-square
estimator in binary choice models is just a special case of the

grouping estimator,

4.2 Grouping Estimator Using Sample Means
When (2) is written as

7 -
¥o= Rx B, w) v ou,,

4 . ,
E(u:) = 0, Hlu, ) = o,

for t e, wand B can be estimated by the grouping
estimator using sample means. Steps 2 and 3 are as follows.

Step 2
Estimate the means of {y, } in cach group and let { ;
be the mean of y, in the i-th group.

Step 3
Under standard assumptions, €, is asymptotically

normal and is written as

¢, = h(EB, a) + e,
(5)
e~ W0, 6%y, i = 1,2,.N.

e and f are estimated by (nonlinear) weighted least squares
replacing Gf by estimated variances. The asvmptotic
distnibution of the estimator is the same as the (nonlinear) GLS
estimator of (5).

4.3 Grouping Estimator Using Sample Medians

Supposc that 2(z, a}is a monotonically increasing
function of z for each value of @ and the medians of { u o) are
zero.  Powell {1984, 1991) proposed a modified LAD
estimator which is consistent and asymptotically normal in

these cases. The estimator minimises

6y S(b,a) =Y |y ~ hix/p, a)].

The grouping estimator using sample medians arc
consistent and  asympiotically normal under the same
assumptions as in Powell (1991). Steps 2 and 3 are as follows,

Step 2
Estirrate the sample medians of ¥, in each group.

Let v, be the sample median in the i-th group.

Step 3
Let
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&,

= {Az,a):z 2 T},
where h_(z, o) = 2h(z, o)/ oz,

Todentify themodel, 02 and £ must be known, Under the

assumptions of Powell (1991), it is easy Lo show that

NCO, 1/4g/(0)), if w =T,

(7) fre

. i nely,

where

/
g, = EI’E) 6‘3‘ V,‘ - h{:;}.p &):

g,(0) = {037k (s ),

arxd fI is Lhe density function of ¢ 1n the i-th cell.

Define the pseudo-likelihood function as

(8) L{a,b,5)

v, €
- @lyfnim, - BED, D}s]
/
L etyntv, - bEBE, @yis].
v, € {2,
where
;z;g =inflz:z e D),z > v},
and
m, = supiz:z € ['[, 2 < v.}.

¢pund & are the density and distribution functions of the

gtandard novmal distribution.

g = (8 " &'y is estimated by maximising (8).
- . . . . o . A -
fhe asymptotic distribution of the estimator, g , is the same a5

Powell's LAD estimator and given by:

o
-

(9) yT(6-6)-N(0,(1/4) D, DD, )

where
D = z 5 w wf,
O
D=3 &, f(0V{h (n,0) @, w),
woe Iy

ol =(h{p.0)x k(. a) ),

k= oh(z,a¥/da ,
7
w,o= LB
and
5, = plim n/T .
F=oo
i hiz, a) = Qalmost cverywhere for
z & {-e, ), wheh includes discrete choice maodels, the

assumptions of Fowell (1991) are violated. However, under

certain distributional conditions of x, , lhe parameters are

A
estimated up to a multiplicative constant using the LAD

method.

Manski (1975, 1985) called the LAD cslimator for
the binary cheice models the maximurn score estimator. The
grouping estimator can be consistent up to a multiplicative
constant under the same conditions as the LAD estimator
{(Nawata (19947}

4.4 Grouping Hstimator Using Other Location

Parameters

Itis possibie to use other types of location parameters
m Step 2, such as trimmed means, [p estimators, and modes.
Note that for the cases in 4.1-4.3, there exist estimators which
correspond 1o the grouping estimator. However, for some
location parameters, the corresponding estimalors are
unknown and the grouping estimator can be potentially
asymptotically more efficient than the existing estimators in

30ME OCCASIONS.
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As an example, consider censored regression models
where hiz} = z if z > 0 and Az} = 0 if z < O
Suppose that the distributions of {#, } are symmetric. The
grouping cstirnator using trimmed means can be more efficient
than the LAD estimator or the symmetrically trimmed
estimator {Powell (1986b)).

3. Conclusgion

In this paper, Nawata's {1990a, b, 1994 grouping
method was shown to be applicable for the estimation of
generalised regression medels.  The grouping estimator is
asvmpiotically as efficient as the corresponding estimators, and
can be more efficient on some occasions.

Since MNawala's grouping mcthod represents a new
class of estimation method, various properties of the estimator
are not yet known. Therefore, further mvestigation of the
method is necessary (o determine the usefulness of the

gstirnator in finite samples.

Appendix

When x_ conlains elements which take infinitely
rnany values, it is necessary to adjust the values of 3 in cach
group, &s suggested in Nawata (1990a, b). (Ritov {1990)
independently supgested the similar idea of "adjustment” in the
censored regression madel)  In this case, the following

assumptions are made:

Assumption A1
{x,} are bounded.

Assumption A2
A(z, a) is uniformly continuous for any possible

value of a.

The estimator is defined as follows (the proof of
consistency and asymplotic normality 1s a simple modification
of Nawata {19%0a, b)).

Divide the sample space of x, into N non-

overlapping groups {Figure 3) so that:

1} the largest distance between two points in the same
-,
group goes to zero as the order of T for some

d1>0;

y . -4

1) forsome d, € (23, 1), n-T ? convergesto 8
ir probability for any 1, where #, 15 the mumber of
observations in the i-th group and {8} are

bounded away from zero.

Figure 3 Divide the sample spacc of x, mnto

N non-overlapping groups

To obtain the asympiotic distribution of the estimator
by the adjustment of y,, the following assumptions are
required in addition to Assumptions A1 - AZ.

Assumplion A3

The estimator of the location parameter used in the
estimation satisfies the conditions given m Appendix A of
Nawata (19%0a).

Assumption A4
Al
Let kl_ be a vector of estimators of the location

parameter and other necessary parameters and A.I. be the true
Al
value of A, . Then there exists ¢ > 0 such thal

(10) sup |F(w) - T ()] < o/, .

w

for any i, where F,(w) and F (w0} are (exact) distribution
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- ~ - -~ N
and asymptolic distnbution functions of y/n (A, - A},
respectively, Note thal this assumption is satisfied in most

cases by the simple modification of the Berry-Esseen Theorem.

Unlike the case where x, takes finitely many values,
there are two potential prablems in this case:
1) errors caused by the sizes of groups;
11} sinee the number of groups goes to nlimty, the difference
between the exact and asymptotic distributions may not be
ignored.

The first problem is corrected by the adjustment of v ;
as nthe followng steps and. if &, > 2/3, itis easy to show
that the error caused by the second problem can he ignored

from Assumption A4

Let X, be the sample mean of x, in the i-th group.,
Estimate the locetion parameters of nterest of y, and other

necessary parameters in each group,

Apply the maximum likelibood methods based on the
asyrptotic distibutions and estimate the first-round estimators
;1 and %} using { & 3. 1t 1s easy to show that the
eslimators are consistent estimators of order 77°, where

e = minfd, 172}

Adjust the value of 3, by the first round estimators

A
o, and B, usinﬁ; the proper methods as the following
exarnples, and let ¥, be the adjusted value of ¥,. (Figure

4)

Pxample ALl Censored Regressiop Models
When A{z) = zif 2 > 0and0ifz <« 0, the

e ; . i o .
moedel 18 censored regression model. Lety, be given by

) ¥ =y - (x, - XY B

o . - D - :

Fhe censoring values of ¥, arenol zero. Therefore, lot
. -d,

the new censoring value be {0 = CE-T ', where

e, > 0 and O< 4, < dl, and define the adjusted values

a5

a
t

. i
v, Hy, = C

() » = {

& ctherwise,

2

Note that, aller the second round, the censoring vaiue becomes
{ rather than zero.

Example A2 Binary Choice Models When the Distribution
of u isKnown

Suppose A{z) = 1{z > O)where 1{-}is an
indicator function which takes [ if - 15 true and 0 otherwise,

and the distribution function of - u, is given by a known
function F{x). The model is a binary cheice model, and the

adjusted value y_: 1s defined as
- . LA ;A
(13) ye =y, - {F(x, B) - F(X, B}
Note that the adjusted value y; maynotben [ O, 11

Lxample A3 Box-Cox Transformation Models

In the Box-Cox transformation models, k(z, adis
differentiable with respect 1o z for anv possible valie of a.

The adjustment values are defined as

FAR . . " .
where A, is estimaied value of R {y, , &) using
~ z

- A
¥, opand B Afler the second round estimation, the
adjustment 15 done using & higher-order  Taylor expansion;
that is (he j-th round adjustment uses the j-th order of the

Taylor expansion.

By this adjustment, the error caused by the sizes of
={o+d)}

cells becomes O [T ¥, Estimate the second-round
A Il

. # : *
estimators @, and B, using {y, }.

Slep 3

Repeat the adjustment | times such that | d > 12
and determine the final estimalor. By the repetiion of the
adjustment procedure, the effect of ihe sizes of groups
becomes o, (774 and the asympiotic distributions of the
grouping estimator are given by the same formulae as in the

case where x, takes finitely many values,
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Figure 4 Adjust the values of y, using the previous
round estimator
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